作为一个开发人员需要了解周边的问题点,才能更好的做好自己一亩三分地的活。好文分享
一、开发语言
建议php,java。但是不论什么语言,最终的代码质量还是要看管理。
二、代码版本管理
网速不是问题的话还是使用svn,svn做分支处理。
三、服务器硬件
资金充裕的话最好3台,一台werserver,一台db,一台备份。备份策略,可以drbd,可以rsync。
四、机房
三种机房尽量不要选:联通访问特别慢的电信机房、电信访问特别慢的联通机房、电信联通访问特别慢的移动或铁通机房
五、架构
初期架构一般比较简单,web负载均衡+数据库主从+缓存+分布式存储+队列。大方向上也确实就这几样东西,细节上也无数文章都重复过了,按照将来会有N多WEB,N多主从关系,N多缓存,N多xxx设计就行,基本方案都是现成的,只是您比其他人厉害之处就在于设计上考虑到缓存失效时的雪崩效应、主从同步的数据一致性和时间差、队列的稳定性和失败后的重试策略、文件存储的效率和备份方式等等意外情况。缓存总有一天会失效,数据库复制总有一天会断掉,队列总有一天会写不进去,电源总有一天会烧坏。根据墨菲定律,如果不考虑这些,网站早晚会成为茶几。
六、服务器软件
Linux、nginx、php、mysql,几乎是标配。nginx、php、mysql、activemq、其他的等等,除非你改过这些软件或你的程序真的不兼容新版本,否则尽量版本越新越好,版本新,意味着新特性增多、BUG减少、性能增加。总有些道听途说的人跟你说老的版本稳定。所谓稳定,是相对于特殊业务来说的,而就一个php写的网站,大多数人都没改过任何服务器软件源代码,绝大多数情况是能平稳的升级到新版本的。类似于jdk5到jdk6,python2到python3这类变动比较大的升级还是比较少见的。
七、数据库
几乎所有操作最后都要落到数据库身上,它又最难扩展(存储也挺难)。对于mysql,什么样的表用myisam,什么样的表用innodb,在开发之前要确定。复制策略、分片策略,也要确定。表引擎方面,一般,更新不多、不需要事务的表可以用myisam,需要行锁定、事务支持的,用innodb。myisam的锁表不一定是性能低下的根源,innodb也不一定全是行锁,具体细节要多看相关的文档,熟悉了引擎特性才能用的更好。现代WEB应用越来越复杂了,我们设计表结构时常常设计很多冗余,虽然不符合传统范式,但为了速度考虑还是值得的,要求高的情况下甚至要杜绝联合查询。编程时得多注意数据一致性。
复制策略方面,多主多从结构也最好一开始就设计好,代码直接按照多主多从来编写,用一些小技巧来避免复制延时问题,并且还要解决多数据库数据是否一致,可以自己写或者找现成的运维工具。
分片策略。总会有那么几个表数据量超大,这时分片必不可免。分片有很多策略,从简单的分区到根据热度自动调整,依照具体业务选择一个适合自己的。避免自增ID作为主键,不利于分片。
用存储过程是比较难扩展的,这种情形多发生于传统C/S,特别是OA系统转换过来的开发人员。低成本网站不是一两台小型机跑一个数据库处理所有业务的模式,是机海作战。方便水平扩展比那点预分析时间和网络传输流量要重要的多的多。
NoSQL。这只是一个概念。实际应用中,网站有着越来越多的密集写操作、上亿的简单关系数据读取、热备等,这都不是传统关系数据库所擅长的,于是就产生了很多非关系型数据库,比如Redis/TC&TT/MongoDB/Memcachedb等,在测试中,这些几乎都达到了每秒至少一万次的写操作,内存型的甚至5万以上。例如mongodb,几句配置就可以组建一个复制+自动分片+failover的环境,文档化的存储也简化了传统设计库结构再开发的模式。很多业务是可以用这类数据库来替代mysql的。
八、缓存
数据库很脆弱,一定要有缓存在前面挡着,其实我们优化速度,几乎就是优化缓存,能用缓存的地方,就不要再跑到后端数据库那折腾。缓存有持久化缓存、内存缓存,生成静态页面是最容易理解的持久化缓存了,还有很多比如varnish的分块缓存、前面提到的memcachedb等,内存缓存,memcached首当其冲。缓存更新可用被动更新和主动更新。被动更新的好处是设计简单,缓存空了就自动去数据库取数据再把缓存填上,但容易引发雪崩效应,一旦缓存大面积失效,数据库的压力直线上升很可能挂掉。主动缓存可避免这点但是可能引发程序取不到数据的问题。这两者之间如何配合,程序设计要多动脑筋。
九、队列
用户一个操作很可能引发一系列资源和功能的调动,这些调动如果同时发生,压力无法控制,用户体验也不好,可以把这样一些操作放入队列,由另几个模块去异步执行,例如发送邮件,发送手机短信。开源队列服务器很多,性能要求不高用数据库当做队列也可以,只要保证程序读写队列的接口不变,底层队列服务可随时更换就可以,类似Zend Framework里的Zend_Queue类,java.util.Queue接口等。
十、文件存储
除了结构化数据,我们经常要存放其他的数据,像图片之类的。这类数据数量繁多、访问量大。典型的就是图片,从用户头像到用户上传的照片,还要生成不同的缩略图尺寸。存储的分布几乎跟数据库扩展一样艰难。不使用专业存储的情况下,基本都是靠自己的NAS。这就涉及到结构。拿图片存储举例,图片是非常容易产生热点的,有些图片上传后就不再有人看,有些可能每天被访问数十万次,而且大量小文件的异步备份也很耗费时间。
为了将来图片走cdn做准备,一开始最好就将图片的域名分开,且不用主域名。很多网站都将cookie设置到了.domain.ltd,如果图片也在这个域名下,很可能因为cookie而造成缓存失效,并且占多余流量,还可能因为浏览器并发线程限制造成访问缓慢。
如果用普通的文件系统存储图片,有一个简单的方法。计算文件的hash值,比如md5,以结果第一位作为第一级目录,这样第一级有16个目录。从0到F,可以把这个字母作为域名,0.yourimg.com到f.yourimg.com(客户端dns压力会增大),还可以扩展到最多16个NAS集群上。第二级可用年月例如,201011,第三级用日,第四级可选,根据上传量,比如am/pm,甚至小时。最终的目录结构可能会是 e/201008/25/am/e43ae391c839d82801920cf.jpg。rsync备份时可以用脚本只同步某年某日某时的文件,避免计算大量文件带来的开销。当然最好是能用专门的分布式文件系统或更专业点的存储解决方案。
1. 前端架构 浏览器优化技术,CDN,动静分离-静态资源独立部署,图片服务,反向代理,DNS(利用dns负载均衡)
2. 应用层架构 开发框架,页面渲染,负载均衡,session管理 跨集群的session共享,动态页面静态化 业务拆分
虚拟化服务器 将一个物理机拆分成多个虚拟服务器
3. 服务层架构 分布式消息 分布式服务 分布式缓存 分布式配置
4. 存储架构 分布式文件 关系数据库 nosql数据库 数据同步
5. 后台架构 搜索引擎 数据仓库 推荐系统
6. 数据采集与监控 浏览器数据采集 服务器业务数据采集 服务器性能数据采集 系统监控 系统报警
7. 安全架构 web攻击(xss, sql注入) 数据保护
8. 数据中心机房架构